作者:admin 发布日期:2016-05-03 22:41 信息来源:http://www.jnnhdy.com/
本文针对传统站用电源分散设计存在的问题,阐述了站用交直流一体化电源系统的设计方案及其技术特点,并对其所产生的经济效益与社会效益等方面进行了综合分析。
一直以来,变电站站用电源分为交流电源系统、直流电源系统、UPS不间断电源系统、通信电源系统等,各子系统采用分散设计,独立组屏,设备由不同的供应商生产、安装、调试,供电系统也分配不同的专业人员进行管理。站用电源的分散设计与管理,存在着诸多问题:
由不同供应商提供的交流系统与直流系统通信规约一般不兼容,难以实现网络化系统管理,自动化程度低。由于没有统一的监控设备对整个站用电源进行管理,不能实现系统数据共享,无法进行站用电源协调联动、状态检修等深层次开发应用。 信息请登陆:输配电设备网
2、 可靠性受到影响
由于站用电源信息不能网络共享,针对故障或告警信息不具备进行综合分析的基础平台,不同专业的巡检人员分别管理各个电源子系统,难以进行系统分析判断、及时发现事故隐患。 信息来源:http://tede.cn
对于涉及需站用电源各子系统协调才能解决的问题难以统一处理。如:防雷配置,避雷器参数选择,安装位置只有将整个站用电源交直流系统统一考虑才能解决;由于充电模块均流对于直流母线上纹波较敏感,需要对母线所接负荷,如逆变电源等反灌电流进行统一治理等。 信息请登陆:输配电设备网
3、 经济性较差
由不同供应商分别设计各个子系统,资源不能综合考虑,造成配置重复,一次性投资显著增加。如:直流电源,UPS不间断电源、通讯电源分别配置独立的蓄电池,浪费用严重;交流系统配置电源自动切换设备,充电模块前又重复配置,既浪费又使设备之间难于协调运行。
4、 长期维护不方便,增加成本
能华电力专用逆变电源装置(济南能华机电设备有限公司生产)
各个供应商由于利益差异使安装、服务协调困难,站用电源一旦出现故障需向多个厂家进行沟通协调,造成沟通困难与效率低下。
现有变电站站用电源分配不同专业人员进行管理:交流系统与直流系统由变电人员进行运行维护,UPS由自动化人员进行维护,通信电源由通信人员维护。人力资源不能总体调配,通信电源、UPS等也没有纳入变电严格的巡检范围,可靠性得不到保障。
通过分析与研究传统站用电源分散设计存在的问题,针对性提出了站用交直流一体化的设计思路,以实现:第一、建立站用电源统一网络智能平台;第二、消除站用电源隐患;第三、提高站用电源管理水平;第四、进行深层次开发,提高站用电源安全与智能化水平。 信息来源:http://www.tede.cn
1、 交直流一体电源系统的定义 信息来自:www.tede.cn
站用交直流一体化电源系统是指:将站用交流电源系统、直流电源系统、逆变电源系统、通信电源系统统一设计、监控、生产、调试、服务,通过网络通信、设计优化、系统联动方法,实现站用电源安全化、网络智能化设计,实现站用电源交钥匙工程,实现效益最大化目标。
智能站用电源交直流一体化系统包括:智能交流电源子系统、智能直流电源子系统、智能逆变电源子系统、智能通信电源子系统、一体化监控子系统。
2、 主要技术特征
站用交直流一体化电源系并不是对交流、直流电源系统的简单混装,其主要技术特征表现在:
(1) 网络智能化设计:通过一体化监控器对站用交流电源、直流电源、逆变电源、通信电源进行统一监控,建立统一的信息共享平台,实现网络智能化。
(2) 设计优化:A、取消充电模块前的交流自动切换回路;B、取消原直流系统对交流部分的数据采集(配电监控);C、统一进行波形优化处理,针对逆变电源反灌电流影响充电模块均流进行抑制等;D、统一进行防雷配置; 信息请登陆:输配电设备网
(3) 对交流电源部份进行安全、智能化设计:A、进线采用ATS自动转化开关、实现电气与机械双闭锁;B、馈线采用固定插拔式安装、无打孔母线技术;C、集中进行监控,实现“四遥”功能等。 信息来自:输配电设备网
(4) 优化蓄电池配置:A、可取消UPS,使用逆变器直接挂于直流母线代替;B、取消通信蓄电池组及充电设备,使用DC/DC变换器直接挂于直流母线代替。
(5) 系统联动:根据交流进线运行方式,自动调整直流运行,达到最佳方式运行。
(6) 二次配电管理:对二次配电进行统一管理,如照明、风机、空调、水泵、门禁等站用非主控设备进行统一智能化管理。
(8) 深层次开发:一体化信息共享平台,为站用电源的深层开发提供了可能,可根据客户的需求进行开发。 信息来自:输配电设备网
3、 交直流一体化电源系统的优势特点
A、各子系统智能设备通过通信网络接入一体化监控器,一体化监控器1个通信口、一种规约接入综自/调度系统; 信息来源:http://www.tede.cn
B、可以在一个位置实时查看各子系统的电量、开关状态、事件信息等,可修改系统参数、运行方式、遥控开关,实现站用电源“四遥”功能; 信息请登陆:输配电设备网
C、统一的信息共享平台,可以提高站用电源综合自动化应用水平,进行站用电源协调联动、状态检修等深层次开发应用。
(2)站用电源更加安全可靠
一次、二次设备均采用成熟可靠技术,其本身没有任何技术风险,通过一体设计可以有效避免站用电源的安全隐患。 信息来源:http://www.tede.cn
A、蓄电池一体化设计,避免了UPS蓄电池与通信电源蓄电池维护不精细、损坏不能及时发现的问题
B、可以对站用电源故障进行综合分析,及时发潜在问题;
C、可以实现对站用电源共性隐患进行统一处理,如:统一防雷配置、统一波形优化处理等。
(3)提高站用电源管理水平
一体化电源便于集中管理全站电源系统,提供站用电源的整体管理水平。由一组维护人员同时管理、维护全站电源,便于统一调配人力资源;将通信电源、UPS等纳入变电的巡检范围,便于对信息的进行综合分析,及时发现事故隐患。
(4)实行生产厂家“交钥匙工程”
由一家厂家提供所有电源的设计、生产、安装、服务,一揽子解决所有站用电源问题,可以减少采购、协调、沟通成本。 信
三、一体化电源针对数字化变电站的开发应用
1、 实现站用电源模块化、数字化 信.cn
(1)所有开关智能模块化,对外无二次接线、只有通讯线
所谓开关智能模块化是指,将开关及传感器、智能电路板集成在一个机箱内,全部二次接线全部在机箱内完成,对外只有通信接口的设计模块。 信息来源:http://tede.cn
对集中功能分散化,使模块之间、屏柜之间无二次联络线。如,绝缘检测馈线漏电流检测分散到直流馈线模块实现,蓄电池电压采集分散到电压采集模块分散实现。将各个模块进行积木式组合即可形成一整套设备,可大大缩短供货周期;相同参数模块可以互换,检修维护标准化。 信源:http://www.tede.cn
一体化电源可以分为以下模块:交流进线模块、交流馈线模块、充电模块、降压模块、逆变电源模块(代替UPS)、通信DC/DC模块(直接挂于直流母线);直流馈线模块、站用电源一体化监控模块等。
(1)一体化运行的协调联动
对站用电源负荷开关依据负荷之间一定条件、一定逻辑进行协调联动。如,根据交流进线运行方式,自动调整直流运行,达到最佳方式运行。
(2)实现站用辅助设备系统智能化管理 信息
变电站辅助设备是指变电站照明、配电、空调、风机、消防、门禁、周界保护系统+生活水泵等系统设备的统称。智能终端就地和辅助设备连接,实现上行下达信息数字化传输,根据程序化操作方案采集相应辅助设备信息,作为动作条件,产生程序化动作。
举例2:周界报警发现非法进入,其信息传到一体化监控模块,监控模块立即启动照明系统开关,并协调立即启动摄像系统。
四、 一体化电源经济效益与社会效益分析
交直流一体化电源在设计上充分体现了电力系统所倡导的经济、节能、环保理念,具体良好的经济效益和社会效益。
1、 经济性分析
(2)降低长期维护成本:由一组维护人员替换原来四组维护人员,可大大减少人力成本支出;可减少采购、协调管理等成本。
2、 技术节能性分析
一体化电源实现了对每路馈线进行有条件控制,可对小室风机负荷设定根据温度自动启动,防止长转风机等不必要的电能浪费,同时也提高了设备使用寿命。目前,110KV及以下变电站基本实现了无人值班,结合遥视系统可不需人到现场就能实现设备巡视。而遥视系统需要照明系统配合完成,在人不需查看时,照明灯是可以不用开启的,因此防止长明灯等不必要的电能浪费就可节约电能。
(2)使用有源逆变器将蓄电池放电电流回馈电网
以一般110KV变电站为例:配置2V,300AH阀控式铅酸蓄电池104只。在核对蓄电池组容量试验中,放电电流为1C~2C,如果取1.5C=450A,放电试验时间按1H计算。则放电电流回馈电网可节电450A*220V*1H=99KWH。更重要的是使用有源逆变器将蓄电池放电电流回馈电网避免了放电负载发热燃烧等危险。
(3)采用高频式电源变换器达到节能效果
为了提高电能利用率,站用电源一体化系统扩大了一次电能经电量变换器优化功率因数后输出带载的比例,如:事故照明负荷经专用逆变输出,通信电源由DC/DC挂于直流母线实现,也可按用户要求提供大负荷电量变换器优化功率因数后输出带载,达到节能效果。
3、 技术环保性分析
(1)铅酸蓄电池的环保问题
(3)取消UPS蓄电池对环保的贡献
以1个110KV变电站为例:常规设计1KVA 放电2小时UPS蓄电池,每台UPS需要12V 7AH铅酸蓄电池18只。
如果110kV及以下变电站均实现取消UPS蓄电池,则可节约12V 7AH铅酸蓄电池2.96万*18=53.28万只。
五、 应用实例
深圳市泰昂电子技术有限公司研发的GQH-T智能站用交直流一体化电源系统,已通过国家型式检验并获得国家实用新型专利(专利号:ZL 2006 2 0055288.3),目前已在广东、浙江、湖南、河南、贵州、江西、安徽等地多座变电站投入运行,用户反应良好。
图2:阳江110kV城西变电站一体化电源系统运行现场